DR. BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY, CHHATRAPATI SAMBHAJINAGAR.

CIRCULAR NO.SU/B.Sc./CBC&GS/87/2024

It is hereby inform to all concerned that, the Revised syllabi prepared by the Board of Studies/Ad-hoc Boards and recommended by the Dean, Faculty of Science & Technology, Academic Council at its meeting held on 08 April 2024 has accepted the following Syllabi under the Faculty of Science & Technology as per Norms of Choiced Based Credit Grading System run at the Affiliated Colleges, Dr.Babasaheb Ambedkar Marathwada University as appended herewith.

Sr.No.	Courses	Semester
1.	BA./B.Sc.Mathematics (Optional)	Vth and VIth semester
2.	B.Sc.Statistics (Optional)	Vth and VIth semester
3.	B.Sc.Horticuluture (Optional)	Vth and VIth semester
4.	B.Sc.Industrial Chemistry(Optional)	Vth and VIth semester

This is effective from the Academic Year 2024-25 and onwards.

All concerned are requested to note the contents of this circular and bring the notice to the students, teachers and staff for their information and necessary action.

University Campus, Aurangabad-431 004. REF.No.SU/2024/2658-66 Date: 03.05.2024. Deputy Registrar, Academic Section

Copy forwarded with compliments to :-

- The Principal of all concerned Colleges,
 Dr. Babasaheb Ambedkar Marathwada University,
- 2] The Director, University Network & Information Centre, UNIC, with a request to upload this Circular on University Website. Copy to:-
- 1] The Director, Board of Examinations & Evaluation, Dr.Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar.
- 2] The Section Officer,[B.Sc.Unit] Examination Branch, Dr.Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar.
- 3] The Programmer [Computer Unit-1] Examinations, Dr.Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar.
- 4| The Programmer [Computer Unit-2| Examinations, Dr.Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar.
- 5] The In-charge,[E-Suvidha Kendra], Rajarshi Shahu Maharaj Pariksha Bhavan, Dr.Babasahcb Λmbcdkar Marathwada University, Chhatrapati Sambhajinagar.
- 6] The Public Relation Officer, Dr.Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar.
- 7] The Record Keeper, Dr.Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar.

DR.BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY

CHHATRAPATI SAMBHAJINAGAR -431004 (MS) INDIA

Undergraduate Bachelor Degree Program in Science and Technology

B.A./B.Sc.(Mathematics)Third Year (Semester-V & VI)

Course Structure and Curriculum
Choice Based Credit and Grading System

(Effective from Academic Year 2024-2025)

1

Dr.Babasaheb Ambedkar Marathwada University Chhatrapati Sambhaji Nagar-431004 (MS) India

Course Structure of B.A./B.Sc.(Mathematics) Third Year (Semester-VI) under CBC&GS Pattern

	Course Code	Course Title	Total Periods (Teaching Periods /week)	Credits	Scheme of Examination			
					Max. Marks	CIA	UA	Min. Marks
DSC-1C Core Courses	MAT501 Paper - XIII	Real Analysis-I	30 (45Periods) (3/week)	2	50	10	40	20
	MAT502 Paper- XIV	Abstract Algebra	30 (45Periods) (3/week)	2	50	10	40	20
	MAT503P Paper-XV	Lab.Course-III (Based on MAT501 and MAT502)	90 (120Periods) (6/week)	3	50	10	40	20
SEC-1 Elective Course (Any	MAT-504 Paper- XVI(A)	Mathematical Statistics-I	30 (45Periods) (3/week)	2	50	10	40	20
One)	MAT-505 Paper- XVI(B)	Programming in C-I	30 (45Periods) (3/week)	2	50	10	40	20
				9	200	40	160	80

Total Credits for Semester-V: 09

	Course Code	Course Title	Total Periods (Teaching Periods /week)	Credi ts	Scheme of Examination			
					Max. Marks	CIA	UA	Min. Marks
Core Courses	MAT601 Paper-XVII	Real Analysis-II	30 (45Periods) (3/week)	2	50	10	40	20
	MAT602 Paper-XVIII	Ordinary Differential Equations	30 (45Periods) (3/week)	2	50	10	40	20
	MAT603P Paper-XIX	Lab Course-IV (Based on MAT601 and MAT602)	90 (120Periods) (6/week)	3	50	10	40	20
SEC-2 Elective Course (Any	MAT-604 Paper-XX (A)	Mathematical Statistics-II	30 (45Periods) (3/week)	2	50	10	40	20
One)	MAT-605 Paper- XX(B)	Programming in C-II	30 (45Periods) (3/week)	2	50	10	40	20
				9	200	40	160	80

Total Credits for Semester-VI: 09

UA- University Assessment

CIA- Continuous Internal Assessment

Note: CIA: Internal Test -05 Marks and Assignment/Tutorial-05 Marks

(Two internal testseach of 05 marks be conducted and average of the two tests will be considered)

Dr.Babasaheb Ambedkar Marathwada University Chhatrapati Sambhajinagar -431004 (MS) India

Curriculum of B.A./B.Sc. (Mathematics) Third Year (Semester-V & Semester-VI) under CBC&GS pattern

B.A./B.Sc.(Mathematics) Third Year (Semester-V)

Course Code: MAT501	Course Name: Real Analysis-I [Core course]
Credits :02	Total Periods: 45
Course Objectives	 To introduce the basic concepts and notions of real analysis To learn the basic concepts of Sequence and Series of Real numbers To acquire the skill of finding the jacobians
Course Outcomes	CO1:Define and recognize bounded, convergent, divergent, Cauchy, and monotonic sequences. CO2:Define and recognize convergent, divergent, alternating series and limit comparison tests for conditional convergence and absolute convergence of an infinite series of real numbers. CO3:Determine the Jacobian of Implicit and explicit functions and condition for Jacobian to be vanish.
Course Content	
Unit-I	Functions [10Hrs] Functions, Real valued functions, Equivalence, Countability, Real Numbers, Least upper bounds [1]
Unit-II	Sequences of Real Numbers [12 Hrs] Definition of Sequence and Subsequence, Limit of a sequence, Convergent sequences, Divergent Sequence, Bounded Sequences, Monotone Sequences, Cauchy Sequences.[1]
Unit-III	Series of Real Numbers [13 Hrs] Convergence and divergence, Series with non-negative terms, Alternating Series, Conditional convergence and absolute convergence. [1]
Unit-IV	Jacobians [10Hrs] Definition, Case of function of functions, Jacobian of Implicit functions, Necessary and sufficient condition for a Jacobian to vanish.[2]
Recommended Textbook	 Richard R.Goldberg: Methods of Real Analysis, Oxford and IBH Co.Pvt.Ltd, New Delhi (1974) J.N.Sharma and A.R.Vashistha: Real Analysis, Krishna Prakashan Media(P) Ltd, Meerut (2014)
Scope	Chapter 1: 1.3, 1.4, 1.5, 1.6,1.7[1] Chapter 2:2.1, 2.2, 2.3, 2.4, 2.5, 2.6,2.10(A, B, C, D)[1] Chapter 3:3.1, 3.2, 3.3, 3.4 [1] Chapter 13: Articles 1,2,3,4,5,6,7[2]
Reference Books	1.D.Somasundaram and B.Choudhary: A first course in Mathematical Analysis, Narsoba Publishing House, New Delhi (1996) 2. Hari Kisan: Real Analysis, Pragati Prakashan, Meerut (2016) 3.S.K.Mittal and S.K.Pundir: Real Analysis, Pragati Prakashan, Meerut (2019)

Course Code: MAT502	Course Name: Abstract Algebra [Core course]
Credits :02	Total Periods: 45
Course Objectives	Student will learn group, ring, ideal, maximal ideal and their properties.
Course Outcomes	CO1: Describe group and subgroup, CO2: Explain Normal subgroup and Quotient groups. CO3: Define Ring and some special types of rings. CO4: Describe Ideals and Maximal Ideals.
Course Content	
Unit-I	Group Theory: Definition of a group, Some examples of groups, Some
	preliminary lemmas, Subgroups, Cosets, Lagrange's theorem [10Hrs]
Unit-II	A counting principle, Normal subgroups and quotient groups, Group
	homomorphism, Kernel of group homomorphism, Group isomorphism
	[12Hrs]
Unit-III	Ring Theory: Definition and examples of rings, Some special classes of rings,
	Characteristic of an integral domain, Ring homomorphism, Kernel of ring
	homomorphism, Ring isomorphism.[13Hrs]
Unit-IV	Ideals and quotient rings, More ideals and quotient rings, Maximal ideals,
	Polynomial rings, Irreducible polynomial.[10Hrs]
Recommended Textbook I. N. Herstein: Topics in Algebra, Willey Eastern Pvt. Ltd., New Delhi, Second Edition. (1975)	
Scope	Chapter 2: 2.1, 2.2, 2.3, 2.4, 2.5 (Theorem 2.5.1 without proof), 2.6, 2.7 (Cauchy's and Sylow's theorem for Abelian groups are without proof, Omit Lemma 2.7.5 and Theorem 2.7.2). Chapter 3: 3.1, 3.2, 3.3, 3.4, 3.5, 3.9. (Theorem 3.9.1 and Lemma 3.9.2 are without proof).
Reference Books	 A. R. Vasishtha: Modern Algebra, Krishna Prakashan Media Pvt. Ltd. Meerut. (2019) M.L.Khanna: Modern Algebra, Jai Prakash Nath and Co. Meerut. (2018) Surjeet Singh and QaziZameeruddin: Modern Algebra, Vikas Publishing House Pvt. Ltd. New Delhi. (2021) Goyal J. K. And K. P. Gupta: Advanced Course in Modern Algebra, PragatiPrakashan, Meerut. (2022) V. K. Khanna and S. K. Bhambri: A course in Abstract Algebra, Vikas Publishing House Pvt. Ltd. New Delhi (2022).

Course Code: MAT503P	Course Name: Lab Course-III [Core course]
	(Based on MAT501 and MAT502)
Credits :03	Total Periods: 120
Course Objectives	Student will be able to apply the basic concepts and results of real analysis and
	abstract algebra
Course Outcomes	CO1:Define and recognize bounded, convergent, divergent, Cauchy, and
	monotonic sequences.
	CO2:Define and recognize convergence and divergence of series.
	CO3:Determine the Jacobian of Implicit and explicit function.
	CO4: Describe group and subgroup,
	CO5: Explain Normal subgroup and Quotient groups.
	CO6: Define Ring and some special types of rings.
	CO7: Describe Ideals and Maximal Ideals.
Course Content	
Section-A (Based on MAT	[501) [Conduct at least five practicals from the following list of practicals)
Practical-IA	To solve examples/results on functions, real valued functions and
	equivalence.
Practical-IIA	To solve examples/exercise on countability, real numbers and least upper
	bounds
Practical-IIIA	To solve examples/exercise on convergent and divergent sequences
Practical-IVA	To solve examples/exercise on bounded sequences and monotone sequences
Practical-VA	To solve examples/exercise on convergent and divergent series
Practical-VIA	To solve examples/exercise on conditional and absolute convergence of series
Practical-VIIA	To solve examples/exercise on Jacobians
	502) [Conduct at least five practicalsfrom the following list of practicals]
Practical-IB	To solve examples/exercise/ properties on groups
Practical-IIB	To solve examples/exercise/ results on subgroups
Practical-IIIB	To solve examples/exercise on normal groups and quotient groups
Practical-IVB	To solve examples/exercise/properties on group homomorphisms
Practical-VB	To solve examples/exercise on rings
Practical-VIB	To solve examples/exercise on ring homomorphisms
Practical-VIIB	To solve examples/exercise on ideals, more ideals and polynomial rings
Recommended Textbook	1.Richard R.Goldberg: Methods of Real Analysis ,Oxford and IBH
	Co.Pvt.Ltd,NewDelhi (1976)
	2.J.N.Sharma and A.R.Vashistha: Real Analysis, Krishna Prakashan Media(P)
	Ltd,Meerut(2014)
	3. I. N. Herstein: Topics in Algebra, Willey Eastern Pvt. Ltd., New Delhi,
	Second Edition (1975)
Scope	As mentioned in course content of MAT501 and MAT 502
Reference Books	1.D.Somasundaram and B.Choudhary: A first course in Mathematical
A COLUMN A COURT	Analysis, Narsoba Publishing House, New Delhi (1996).
	2. Hari Kisan: Real Analysis, PragatiPrakashan, Meerut (2016)
	3.S.K.Mittal and S.K.Pundir: Real Analysis, PragatiPrakashan, Meerut.(2019)
	4.A. R. Vasishtha: Modern Algebra, Krishna Prakashan Media Pvt. Ltd.
	Meerut. (2019)
	5.M. L. Khanna: Modern Algebra, Jai Prakash Nath and Co. Meerut.(2018)
	6.Surjeet Singh and QaziZameeruddin: Modern Algebra, Vikas Publishing
	House Pvt. Ltd. New Delhi.(2021)

Course Code: MAT504	Course Name: Mathematical Statistics-I [Skill/Elective course]				
Credits :02	Total Periods: 45				
Course Objectives	Student will be able to learn and apply various statistical techniques				
Course Outcomes	CO 1: Understand the concept of frequency distribution				
	CO 2: Find the arithmetic mean, harmonic mean, mode, median, quartile				
	CO 3: Find measure of dispersion, moments, skewness and Kurtosis etc.				
	CO 4: Fit the data using curve fitting and least square method				
Course Content					
Unit-I	Frequency Distribution:				
	Construction and Graphical Representation of Frequency Distribution,				
	Histograms, Frequency Polygon, Cumulative Frequency, Frequency Curve,				
	Cumulative Frequency Curve.[10Hrs]				
Unit-II	Measures Of Central Tendency:				
	Arithmetic Mean, Geometric Mean, Harmonic Mean, Mode, Median, and				
	Quartiles, Properties of arithmetic mean.[12Hrs]				
Unit-III	Measures of Distribution:				
	Various Measures of Dispersions, Coefficient of Dispersion and Variations,				
	Moments, Skewness and Kurtosis.[13Hrs]				
Unit-IV	Curve Fitting and Principle of least Square :				
	What is curve fitting, Principles of least squares, Fitting a data to a line and to a				
	parabola.[10Hrs]				
Recommended Textbook	S. G. Gupta and V. K. Kapoor:Fundamentals of Mathematical Statistics, Sultan				
	Chand and Co. New Delhi (9 th Edition) (2002).				
Scope	Chapter 2: 2.1, 2.1.1, 2.1.2, 2.2.1, 2.2.2, 2.3, 2.4, 2.5, 2.5.1, 2.5.2, 2.5.3, 2.6,				
	2.6.1, 2.6.2, 2.7, 2.7.1, 2.7.2, 2.8, 2.8.1, 2.9, 2.9.1, 2.11.				
	Charter 2: 21 22 22 24 25 26 27 271 272 272 28 281 20				
	Chapter 3: 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.7.1, 3.7.2, 3.7.3, 3.8, 3.8.1, 3.9,				
	3.9.1, 3.10				
	Chapter 9: 9.1, 9.1.1, 9.1.2, 9.1.3, 9.1.4				
	Chapter 9. 9.1, 9.1.1, 9.1.2, 9.1.3, 9.1.4				
Reference Books	1. Hogg and Craig: Introduction to Mathematical Statistics, Prentice Hall of				
ALLEN VIEW AND VIEW	India (1995).				
100	2. Dennis D. Wackerly, William Mendenhall II, Richard L. Scheaffer:				
*	Mathematical Statistics with Applications, Seventh edition, Brooks/Cole				
	Cengage Learning (2010).				
	3. David Lane:Introduction to Statistics, Rice University (2003)				
	4. Gregg Waterman: Mathematical Statistics, Oregon Institute of Technology				
	(2015)				

Course Code: MAT505	Course Name: Programming in C-I [Skill/Elective course]		
Credits :02	Total Periods: 45		
Course Objectives	Student will learn programming in C language and execute a C program		
Course Outcomes	CO1: Understand and apply the fundamentals of C Program		
	CO2: Define and declare data types and variables		
	CO3: Apply various types of operators and mathematical expressions		
Course Content	CO4: Read and write the character, input and output		
Course Content			
Unit-I	History of C, Importance of C, Sample C Programs, Basic structure of C programs, programming style, executing a C program.[10Hrs]		
Unit-II	Introduction, Character set, C tokens, Keywords and identifies, Constants, variables, Data types, Declaration of Variables, Storage class assigning values to variables, Defining symbolic constants, case studies. [12Hrs]		
Unit-III	Introduction, Arithmetic of operators, Relational operators, Logical operators Assignment operators, Increment and decrement operators, Conditiona operators, Bitwise operators, Special operators, Arithmetic expression Evaluation of expressions, Precedence of arithmetic operators, Some computational problems, Type conversions in expression, Operators precedence and Associativity, mathematical functions. [13Hrs]		
Unit-IV	Introduction, Reading a character, writing a character, formatted input: inputting integer numbers, inputting real numbers, inputting character strings, reading mixed data types, Formatted output: Output of integer numbers, output of real numbers, printing of single character, mixed data output, case studies.[10Hrs]		
Recommended Textbook E. Balagurusamy: Programming in ANSI C (Fourth Edition): Tata M Hill(2008)			
Scope	Ch.1: 1.1,1.2, 1.3,1.4,1.5,1.6, 1.8 to 1.10 Ch.2: 2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,2.10, 2.11 Ch.3: 3.1 to 3.16 Ch.4: 4.1 to 4.5		
Reference Books 1) YP. Kanetkar: Let us C: BPB Publication(2018) 2) Gottfried: Programmning in C: Schaum's Series(1996) 3) MoolishKooper: Spirit of "C"(1998) 4) D. Ravichandran Programming in C: New-Age I Publisher(1996) 5) J.B.Dixit Mastering C Programs(2013) 6) Pradip D Y and Manas Ghosh: Fundamentals of Com Programming in C(2013) 7) V.Rajaraman: Computer Programming in C: PHI Pvt Ltd, New I			

B.A./B.Sc. Mathematics (Third Year) Semester-VI

Course Code: MAT601	Course Name: Real Analysis-II [Core course]
Credits:02	Total Periods: 45
Course Objectives	 To introduce basic concepts ofmetric spaces To learn the properties of metric spaces To learn fundamental concepts of Riemann Integration and Fourier series
Course Outcomes	CO1: Describe several basic concepts of metric spaces and their properties CO2: Understand properties of Riemann integrable functions, and applications of the fundamental theorems of calculus CO3: Find the Fourier series of some standard functions and its applications.
Course Content	
Unit-I	Metric Spaces Metric spaces, Limits in metric spaces [1] [10Hrs]
Unit-II	Continuous functions on Metric Spaces Function continuous at a point on the real line, Reformulation, Functions Continuous on metric space, Open sets, Closed Sets.[1][12Hrs]
Unit-III	Connectedness, Completeness, and Compactness More about open sets, Connected sets, Bounded sets and totally bounded sets, Complete metric spaces, Compact metric spaces, Continuous functions on compact metric spaces.[1][13Hrs]
Unit-IV	Calculus Sets of measure zero, Definition of Riemann Integral, Existence of Riemann Integral, Properties of Riemann Integral, Fundamental theorem of calculus[1] Fourier series -Introduction[2][10Hrs]
Recommended Textbook	1.RichardR.Goldberg: Methods of Real Analysis ,Oxford and IBH Co.Pvt.Ltd,New Delhi (1976). 2.D.Somasundaram and B.Choudhary: A first course in Mathematical Analysis,Narsoba Publishing House, New Delhi (1996).
Scope	Chapter 4: 4.2, 4.3[1] Chapter 5: 5.3, 5.4, 5.5 [1] Chapter 6:6.1,6.2(A,B),6.3(A,B,C,D,E), 6.4(A,B,C,D,E,F), 6.5(A, B, C, D,E).6.6(A,B,C,D)[1] Chapter 7:7.1,7.2,7.3(Theorem Without proof),7.4,7.8[1] Chapter 10: 10.1[2]
Reference Books	 J.N.Sharma and A.R.Vashistha:Real Analysis,KrishnaPrakashanMedia(P) Ltd,Meerut (2014). Hari Kisan:Real Analysis,PragatiPrakashan,Meerut (2016). S.K.Mittal and S.K.Pundir:Real Analysis, PragatiPrakashan,Meerut (2019).

Course Code: MAT602	Course Name: Ordinary Differential Equations [Core course]
Credits :02	Total Periods: 45
Course Objectives	Student will be able to classify and solve ordinary differential equations
Course Outcomes	CO1: Classify and identify the types of functions CO2: Solve the first and second order differential equations CO3: Solve initial value problems and study properties of solutions of IVP. CO4: Find the Wronskian of the solutions
Course Content	
Unit-I	Introduction, Complex numbers, Functions, Polynomials, Complex series and the exponential function, Determinants[10Hrs]
Unit-II	Introduction, Differential equations, Problems associated with differential equations, Linear equations of the first order, The equation $y' + ay = 0$, The equation $y' + ay = b(x)[12Hrs]$
Unit-III	Introduction, The second order homogeneous equation, Initial value problems for second order equations, Linear dependence and independence [13Hrs]
Unit-IV	A formula for the Wronskian, The non-homogeneous equation of order two, The homogeneous equation of order $n[10 \text{Hrs}]$
Recommended Textbook	Earl A. Coddington: An Introduction to Ordinary Differential Equations, Prentice Hall of India, New Delhi (2009)
Scope	Chapter 0: Article 1,2,3,4,5,6 Chapter 1: Article 1,2,3,4,5,6 Chapter 2: Article 1,2,3,4,5,6,7,8
Reference Books	 William F.Boyce, Richard C.DiPrima: Elementary Differential Equations, John Wiley & Sons, Seventh edition (2000) M.D.Raisinghania: Advanced Differential Equations, S. Chand Publishing (2018). G.F.Simmons: Differential Equations with Applications and Historical Notes, Third Edition, Taylor and Francis Group (2017). H.K.Dass: Advanced Engineering Mathematics, S.Chand and Company Ltd. (2019).

Course Objectives Course Outcomes Course Content Section-A (Based on MAT Practical-IIA Practical-IIIA Practical-IIIA Practical-IVA Practical-VA	Course Name: Lab Course-IV [Core course] (Based on MAT601 and MAT602) Total Periods: 120 Student will be able to apply the basic concepts and results of real analysis and ordinary differential equations CO1: Describe several basic concepts of metric spaces and their properties. CO2:Understand properties of Riemann integrable functions, and applications of the fundamental theorems of calculus CO3: Find the Fourier series of some standard functions and its applications CO4: Classify and identify the types of functions CO5:Solve the first and second order differential equations CO6:Solve initial value problems and study properties of solutions of IVP CO7:Find the Wronskian of the solutions 601) [Conduct at least five practicals from the following list of practicals) To solve examples/results on metric spaces To solve examples/exercise of continuous functions on metric spaces To solve examples/exercise on open sets, closed sets and more about open sets
Course Objectives Course Outcomes Course Content Section-A (Based on MAT Practical-IIA Practical-IIIA Practical-IIIA Practical-IVA Practical-VA	Student will be able to apply the basic concepts and results of real analysis and ordinary differential equations CO1: Describe several basic concepts of metric spaces and their properties. CO2:Understand properties of Riemann integrable functions, and applications of the fundamental theorems of calculus CO3: Find the Fourier series of some standard functions and its applications CO4: Classify and identify the types of functions CO5:Solve the first and second order differential equations CO6:Solve initial value problems and study properties of solutions of IVP CO7:Find the Wronskian of the solutions To solve examples/results on metric spaces To solve examples/exercise of continuous functions on metric spaces To solve examples/exercise on open sets, closed sets and more about open sets
Course Objectives Course Outcomes Course Content Section-A (Based on MAT Practical-IIA Practical-IIIA Practical-IIIA Practical-IVA Practical-VA	Student will be able to apply the basic concepts and results of real analysis and ordinary differential equations CO1: Describe several basic concepts of metric spaces and their properties. CO2:Understand properties of Riemann integrable functions, and applications of the fundamental theorems of calculus CO3: Find the Fourier series of some standard functions and its applications CO4: Classify and identify the types of functions CO5:Solve the first and second order differential equations CO6:Solve initial value problems and study properties of solutions of IVP CO7:Find the Wronskian of the solutions To solve examples/results on metric spaces To solve examples/exercise of continuous functions on metric spaces To solve examples/exercise on open sets, closed sets and more about open sets
Course Outcomes Course Content Section-A (Based on MAT Practical-IIA Practical-IIIA Practical-IIIA Practical-IVA Practical-VA	and ordinary differential equations CO1: Describe several basic concepts of metric spaces and their properties. CO2:Understand properties of Riemann integrable functions, and applications of the fundamental theorems of calculus CO3: Find the Fourier series of some standard functions and its applications CO4: Classify and identify the types of functions CO5:Solve the first and second order differential equations CO6:Solve initial value problems and study properties of solutions of IVP CO7:Find the Wronskian of the solutions 601) [Conduct at least five practicals from the following list of practicals) To solve examples/results on metric spaces To solve examples/exercise of continuous functions on metric spaces To solve examples/exercise on open sets, closed sets and more about open sets
Course Outcomes Course Content Section-A (Based on MAT Practical-IIA Practical-IIIA Practical-IIIA Practical-IVA Practical-VA	CO1: Describe several basic concepts of metric spaces and their properties. CO2:Understand properties of Riemann integrable functions, and applications of the fundamental theorems of calculus CO3: Find the Fourier series of some standard functions and its applications CO4: Classify and identify the types of functions CO5:Solve the first and second order differential equations CO6:Solve initial value problems and study properties of solutions of IVP CO7:Find the Wronskian of the solutions To solve examples/results on metric spaces To solve examples/exercise of continuous functions on metric spaces To solve examples/exercise on open sets, closed sets and more about open sets
Course Content Section-A (Based on MAT Practical-IA Practical-IIA Practical-IIIA Practical-IVA Practical-VA	CO2:Understand properties of Riemann integrable functions, and applications of the fundamental theorems of calculus CO3: Find the Fourier series of some standard functions and its applications CO4: Classify and identify the types of functions CO5:Solve the first and second order differential equations CO6:Solve initial value problems and study properties of solutions of IVP CO7:Find the Wronskian of the solutions 601) [Conduct at least five practicals from the following list of practicals) To solve examples/results on metric spaces To solve examples/exercise of continuous functions on metric spaces To solve examples/exercise on open sets, closed sets and more about open sets
Course Content Section-A (Based on MAT Practical-IA Practical-IIA Practical-IIIA Practical-IVA Practical-VA	CO2:Understand properties of Riemann integrable functions, and applications of the fundamental theorems of calculus CO3: Find the Fourier series of some standard functions and its applications CO4: Classify and identify the types of functions CO5:Solve the first and second order differential equations CO6:Solve initial value problems and study properties of solutions of IVP CO7:Find the Wronskian of the solutions 601) [Conduct at least five practicals from the following list of practicals) To solve examples/results on metric spaces To solve examples/exercise of continuous functions on metric spaces To solve examples/exercise on open sets, closed sets and more about open sets
Course Content Section-A (Based on MAT Practical-IA Practical-IIA Practical-IIIA Practical-IVA Practical-VA	CO3: Find the Fourier series of some standard functions and its applications CO4: Classify and identify the types of functions CO5:Solve the first and second order differential equations CO6:Solve initial value problems and study properties of solutions of IVP CO7:Find the Wronskian of the solutions 601) [Conduct at least five practicals from the following list of practicals) To solve examples/results on metric spaces To solve examples/exercise of continuous functions on metric spaces To solve examples/exercise on open sets, closed sets and more about open sets
Course Content Section-A (Based on MAT Practical-IA Practical-IIA Practical-IIIA Practical-IVA Practical-VA	CO4: Classify and identify the types of functions CO5:Solve the first and second order differential equations CO6:Solve initial value problems and study properties of solutions of IVP CO7:Find the Wronskian of the solutions 601) [Conduct at least five practicals from the following list of practicals) To solve examples/results on metric spaces To solve examples/exercise of continuous functions on metric spaces To solve examples/exercise on open sets, closed sets and more about open sets
Course Content Section-A (Based on MAT Practical- IA Practical-IIIA Practical-IIIA Practical-IVA Practical-VA	CO5:Solve the first and second order differential equations CO6:Solve initial value problems and study properties of solutions of IVP CO7:Find the Wronskian of the solutions 601) [Conduct at least five practicals from the following list of practicals) To solve examples/results on metric spaces To solve examples/exercise of continuous functions on metric spaces To solve examples/exercise on open sets, closed sets and more about open sets
Course Content Section-A (Based on MAT Practical-IA Practical-IIA Practical-IIIA Practical-IVA Practical-VA	CO6:Solve initial value problems and study properties of solutions of IVP CO7:Find the Wronskian of the solutions 601) [Conduct at least five practicals from the following list of practicals) To solve examples/results on metric spaces To solve examples/exercise of continuous functions on metric spaces To solve examples/exercise on open sets, closed sets and more about open sets
Course Content Section-A (Based on MAT Practical-IA Practical-IIIA Practical-IIIA Practical-IVA Practical-VA	CO7:Find the Wronskian of the solutions 601) [Conduct at least five practicals from the following list of practicals) To solve examples/results on metric spaces To solve examples/exercise of continuous functions on metric spaces To solve examples/exercise on open sets, closed sets and more about open sets
Course Content Section-A (Based on MAT Practical-IA Practical-IIA Practical-IIIA Practical-IVA Practical-VA	601) [Conduct at least five practicals from the following list of practicals) To solve examples/results on metric spaces To solve examples/exercise of continuous functions on metric spaces To solve examples/exercise on open sets, closed sets and more about open sets
Section-A (Based on MAT Practical-IA Practical-IIA Practical-IIIA Practical-IVA Practical-VA	To solve examples/results on metric spaces To solve examples/exercise of continuous functions on metric spaces To solve examples/exercise on open sets, closed sets and more about open sets
Practical- IA Practical-IIA Practical-IIIA Practical-IVA Practical-VA	To solve examples/results on metric spaces To solve examples/exercise of continuous functions on metric spaces To solve examples/exercise on open sets, closed sets and more about open sets
Practical-IIA Practical-IIIA Practical-IVA Practical-VA	To solve examples/exercise of continuous functions on metric spaces To solve examples/exercise on open sets, closed sets and more about open sets
Practical-IIIA Practical-IVA Practical-VA	To solve examples/exercise on open sets, closed sets and more about open sets
Practical-IVA Practical-VA	
Practical-VA	To solve examples/exercise on connected sets and bounded sets
	To solve examples/exercise on complete metric spaces and compact metric
	spaces
Practical-VIA	To solve examples/exercise on Riemann integrals
	To solve examples/exercise on fundamental theorem of calculus and Fourier series
Section-B (Based on MATe	602) [Conduct at least five practicals from the following list of practicals)
	To solve examples/exercise/ properties on functions, complex series and exponential function
Practical-IIB	To solve examples/exercise/ results on determinants
Practical-IIIB	To solve examples/exercise on linear equations of first order
Practical-IVB	To solve examples/exercise on the equation $y'+ay=b(x)$
979-1 (394-1-4-24-1-5-4-4-5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	To solve examples/exercise on initial value problems for second order equations
Practical-VIB	To solve examples/exercise on linear dependence and linear independence
Practical-VIIB	To solve examples/exercise on homogeneous equation of order <i>n</i> .
	1.RichardR.Goldberg: Methods of Real Analysis,Oxford and IBH Co.Pvt.Ltd,New Delhi (1976). 2.D.Somasundaram and B.Choudhary:A first course in Mathematical Analysis,Narsoba Publishing House, New Delhi (1996). 3.Earl A. Coddington: An Introduction to Ordinary Differential Equations,
Scope	Prentice Hall of India, New Delhi (2009)

Reference Books	1.J.N.Sharma and A.R.Vashistha:Real Analysis,Krishna PrakashanMedia(P)
	Ltd, Meerut (2014).
	2. Hari Kisan:Real Analysis,PragatiPrakashan,Meerut (2016).
	3.S.K.Mittal and S.K.Pundir:Real Analysis, PragatiPrakashan, Meerut (2019).
	4. William F. Boyce, Richard C. DiPrima: Elementary Differential Equations,
	John Wiley & Sons, Seventh edition (2000).
	5.M.D.Raisinghania: Advanced Differential Equations, S. Chand Publishing
	(2018).
	6.G.F.Simmons: Differential Equations with Applications and Historical
	Notes, Third Edition, Taylor and Francis Group (2017).
	7H.K.Dass: Advanced Engineering Mathematics, S.Chand and Company Ltd.
	(2019).
	()

Course Code: MAT604	Course Name: Mathematical Statistics-II [Skill/Elective course]				
Credits :02	Total Periods: 45				
Course Objectives	Student will learn the concept of probability, random variables, variance and moment generating functions.				
Course Outcomes	CO1: Understand the basics of probability and operations of probability CO2:Understand and identify the random variables, probability density function CO3:Determine the mathematical expectation, variance and moment generation function CO4: Study and apply various distributions to analyze the data				
Course Content					
Unit-I	Theory of Probability: Deterministic and non-deterministic experiments, Trial and events, Mathematical and Statistical definition of probability, Axiomatic approach to a Probability, Laws of addition and multiplication of Probability (Extensions without Proof) [10Hrs]				
Unit-II	Random Variables: Discrete and Continuous Random Variables, Probability Density Functions, Distribution Function and its Properties.[12Hrs]				
Unit-III	Mathematical Expectations: Definition, Addition and Multiplication, Theorems on Mathematical Expectation, Covariance, Expectation and Variance of Linear Combination of random Variables, Moment Generating Function, Cumulants.[13Hrs]				
Unit-IV	Probability Distributions: Binomial Distribution, Poisson Distribution, Uniform Distribution, Normal and Exponential Distribution [10Hrs]				
Recommended Textbook	S. G. Gupta and V. K. Kapoor:Fundamentals of Mathematical Statistics,Sultan Chand and Co. New Delhi (9 th Edition)				
Scope	Chapter 4: 4.1, 4.3, 4.3.1, 4.3.2, 4.6, 4.6.1 (Theorems 4.2 to 4.6) 4.6.2, 4.7 (Theorems 4.9 to 4.12) 4.7.3 (Theorems 4.13 to 4.17). Chapter 5: 5.1 (Theorems Without Proof) 5.2, 5.2.1, 5.3, 5.3.1, 5.4, 5.4.2, 5.4.3 Chapter 6: 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.6.1, 6.7, 6.10, 6.10.1, 6.10.2, 6.11, 6.11.1, 6.11.2. Chapter 7: 7.2, 7.2.1, 7.2.2, 7.2.6, 7.2.7, 7.2.9, 7.2.10, 7.3, 7.3.1, 7.3.2, 7.3.4, 7.3.5, 7.3.7, 7.3.8. Chapter 8: 8.1, 8.1.1, 8.1.2, 8.2, 8.2.2, 8.2.3, 8.2.4, 8.2.5, 8.2.6, 8.2.7, 8.6, 8.6.1.				
Reference Books	1.Hogg and Craig: Introduction to Mathematical Statistics, Prentice Hall of India 2.Dennis D.Wackerly, William Mendenhal III, Richard L.Scheaffer: Mathematical Statistics with Applications, Seventh edition, Brooks/Cole Cengage Learning 3.David Lane:Introduction to Statistics, Rice University (2003) 4.Gregg Waterman: Mathematical Statistics, Oregon Institute of Technology (2015)				

Course Code: MAT605	Course Name: Programming in C-II [Skill/Elective course]				
Credits :02	Total Periods: 45				
Course Objectives	Student will learn programming in C language and execute a C program				
Course Outcomes	CO1: Understand and apply various types of statements CO2: Understand and apply loops in C program CO3: Understand and apply one dimensional, two dimensional and multidimensional arrays				
Course Content					
Unit-I	Introduction, Decision making with ifstatement, Simple if statement, Examples, The if else statement, Examples, Nesting of ifelse statement, Examples, The elseif ladder, Examples, The switch statement [10Hrs]				
Unit-II	The ?: Operator, Examples, The goto statement, Examples, Case studies, Introduction, The while statement, Examples, The do statement, Examples. [12Hrs]				
Unit-III	The for statement, Examples, Jumps in loops, Examples, Case studies, Introduction. One dimensional arrays, Declaration of one dimensional arrays, Initialization of one dimensional arrays[13Hrs]				
Unit-IV	Two dimensional arrays, Examples, Initializing two-dimensional arrays, Examples, Multidimensional arrays[10Hrs]				
Recommended Textbook	E. Balagurusamy: Programming in ANSI C (Second Edition): Tata McGraw Hill (2008)				
Scope	Ch-5: 5.1 to 5.9 Ch-6: 6.1 to 6.5 Ch-7: 7.1 to 7.7				
Reference Books	 1.Y.P. Kanetkar: Let us C: BPB Publication (2018) 2. Gottfried: Programmning in C: Schaum's Series(1996) 3.MoolishKooper: Spirit of "C"(1998) 4. D. Ravichandran Programming in C: New-Age International Publisher(1996) 5.J.B.Dixit:Mastering C Programs(2013) 6.Pradip D Y and Manas Ghosh: Fundamentals of Computing and Programming in C(2013) 7.V.Rajaraman: Computer Programming in C: PHI Pvt Ltd, New Delhi (2005) 				

Dr.Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar Faculty of Science and Technology

B.Sc. Mathematics Third Year (Vth/VIth Semester)

Model Question Paper (Pattern_CBC & GS) for Theory examinations

Time-1.30Hours Max.Marks-40

Instructions:

- 1. All questions are compulsory
- 2. Figurestotheright indicatefullmarks

Q.No.1. (Choose the correct alternative. Eachquestioncarries02 marks	10
	(i)	
	(ii)	
	(iii)	
	(iv)	
	(v)	
Q.No. 2.	(A) Attempt any one of the following:	8
	(a) Showthat	
	(b) Provethat	
	(B) Attempt any one of the following:	7
	(c) Solve	
	(d) Obtain the solution of	
Q.No. 3.	(A) Attempt any one of the following:	8
	(a) Showthat	
	(b) Provethat	
	(B) Attempt any one of the following:	7
	(c) Solve	
	(d) Obtain the solution of	

Note: Sub-questions may be set in Q.No.2 and Q.No.3

fint.

Dr.Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar

Faculty of Science and Technology

B.Sc. Mathematics Third Year (Vth/VIth Semester)

Model Question Paper (Pattern_CBC & GS) for Practical examination

Max.Marks-40

Instructions:	
1. All questions arecompulsory	
2. Figures to the right indicate full marks	
Q.No.1. Attempt any Three of the following:	15
a)	
b)	
c)	
d)	
e)	
Q.No. 2. Attempt any Three of the following:	15
a)	
b)	
c)	
d)	
e)	
A ROLL	
Q.No. 3. Record/Practical book	5
Q.No. 4. Oral/ Viva-Voce	5

Time-ThreeHours